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The rotation function in molecular replacement is traditionally

computed in reciprocal space. The common practice is to use a

Patterson vector radius of about the size of the target

molecule to limit the interatomic vectors to match only the

Patterson self-vectors. In real space, the molecular image of a

search model can be searched and matched to the Patterson

function vector space. Depending on which asymmetric unit

the matched Patterson vectors are in, both self or cross

Patterson vectors can be matched to the search model. The

algorithm described here for computing the rotation function

is to average the signals from all images found by the image-

seeking functions in the Patterson vector search. Tests show

that a search model consisting of a two-helix fragment can be

found in a myoglobin crystal using experimental data in a

global rotation search. This demonstrates that the new

rotation function is a potentially useful approach.
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1. Introduction

Molecular replacement is one of the most widely used phasing

methods for structure determination in protein crystallo-

graphy (Blow, 2006; Brünger et al., 1987; Brünger, 1997;

Huber, 1965; Navaza, 1987; Rossmann & Blow, 1962; Machin,

1985; Dodson et al., 1992; Carter & Sweet, 1997). As structural

genomics progresses rapidly and more novel structures are

being determined, the molecular-replacement method has

become the new focus of many developments (Bricogne, 1997;

Read, 2001; Storoni et al., 2004; Vagin & Teplyakov, 1997). The

phase information obtained from molecular-replacement

solutions can sometimes be modified and combined with

phases obtained using other methods (Morris et al., 2002;

Read, 2006; Terwilliger, 2000; Zhang et al., 2006) to generate

traceable maps. This offers the opportunity of using molecular

replacement as a potential method for ab initio phasing.

As the molecular-replacement method is based on the

maximum overlap between the self-vectors of the Patterson

function of the target molecule and the search model (Ross-

mann & Blow, 1962), the method can also be visualized in real

space as an image-seeking problem in Patterson vector space

(Buerger, 1959). If the interatomic vectors in the search model

are the signals to be detected and those in the target molecule

are the background noise, then as the size of the target

molecule increases relative to the search model the level of

background noise of the Patterson function (the interatomic

vectors) will approach the signal level. Furthermore, the peaks

in the Patterson function may not correspond to the atom

positions in the model. Moreover, it is often the case that only

a small fragment of the target molecule is known. Thus, it is



generally difficult to detect the signal of the search model in

order to determine its orientation.

With recent increases in available computing power, it is

possible to conduct a six-dimensional search that will simul-

taneously find the orientation and the position of a search

model (Chang & Lewis, 1997; Kissinger et al., 1999; Glykos &

Kokkinidis, 2000; Liu et al., 2003). This approach has enabled

higher signal-to-noise ratios for smaller search models. Jiang

& Rao (2001) also implemented a six-dimensional search

method but in real Patterson space by searching the rotations

exhaustively and then searching the translations with a fast

vector-matching algorithm (Jiang & Kim, 1991). The six-

dimensional searches have the ability to utilize both the self

and cross Patterson vectors in calculating the overlap between

the search model and the experimental Patterson map. This

ability is believed to be the primary reason why smaller

models can be searched and higher signal-to-noise ratios can

be obtained.

The real-space implementation of rotation functions

(Hoppe & Paulus, 1967; Nordman & Nakatsu, 1963; Nordman,

1966, 1972, 1994; Schilling, 1970) is essentially equivalent to

the reciprocal-space implementation and has been shown to

work for single-helix models for rotation searches in a

myoglobin crystal (Nordman, 1972, 1994). However, in these

rotation searches only the self-Patterson vectors are included

in the matching with the model vectors.

Other rotation functions have been developed to enhance

the reliability and signal-to-noise level of the molecular-

replacement method. The direct rotation-search method is

based on Patterson correlation search and refinement

(Brünger, 1997). The maximum-likelihood method is based on

Bayesian statistics and fast Fourier transform (Read, 2001;

Storoni et al., 2004).

Here, a novel method of computing the rotation function in

real space is described. Because the overlaps of different

Patterson vectors at different locations in a unit cell are

different, the background-noise matches resulting from the

matches between the model vectors and the experimental

Patterson vectors will be different. In contrast, the true

matches will be similar and persistent everywhere. By aver-

aging the signals from all the matches at different locations, we

expect that the signals of the true matches will be increased

greatly. The method is tested by performing a global search for

a two-helix fragment in a myoglobin crystal. It is shown that

our method is able to find the expected rotation-function

peaks in the test.

2. Materials and methods

2.1. The method of matching both the self and cross
Patterson vectors

y0i ¼ Ryi þ t; ð1Þ

y00i ¼ S1y0i þ t1; ð2Þ

vp ¼ x00i � xj ffi up ¼ y00i � yj ¼ S1Ryi þ S1tþ t1 � yj; ð3Þ

vp ffi S1Ryi þ ut;j: ð4Þ

The convention used for the variable names is as follows: ‘x’ is

for real atomic coordinates, ‘y’ for coordinates from the

model, ‘v’ for vectors from the real Patterson and ‘u’ for

vectors computed from the model. In the above equations, xi

and yj are the atoms in the target molecule and the search

model, respectively, and vp are the target Patterson vectors.

(R, t) is a rigid-body transformation. (S1, t1) is a symmetry

operation. In (3), it is assumed that the model atom yi
00 has a

counterpart atom xi
00 in the target. For any given rotation R,

the first term on the far right side of (3) is known. Since for any

given crystal vp is also known, the only undetermined variables

are the translation vector t and the target atom xj; here, the

counterpart atom xj has been substituted for the model atom

yj. This statement is further simplified by (4), where ut,j is an

unknown vector. Given the matches between the vectors vp

and the vectors in the first term on the far right side of (4),

many vectors of ut,j are possible. For any given match between

the search model and the target, the vector t in (1) is in fact

determined and the real variable is the target atom xj.

Therefore, for every target atom xj there are a set of vectors

from the search model that can potentially be matched to the

target Patterson vectors vp.

In other words, according to Buerger (1959), (4) is in fact

searching for the model image in the Patterson function vector

space. To explicitly name the point atom of the vector set of an

image, it is called the ‘pivotal’ atom here. Furthermore, the

atoms in the image are called ‘vector’ atoms. The vector set in

the Buerger convention (Buerger, 1959) contains the vectors

from the pivotal atom to the vector atoms. In (4), these vectors

are transformed by a fixed difference vector ut,j. If (S1, t1) is an

identical symmetry operation, the Patterson vectors matched

are self-vectors. If it is any other symmetry operation, the

vectors matched are cross-vectors. It is also worthwhile noting

that if the pivotal atom is a heavy atom, such as the Fe atom in

myoglobin, the associated set of vectors will have a higher

weight than those for other pivotal atoms.

Our rotation function is based on the matching equation

shown in (4). Firstly, several matching characteristics (image-

seeking functions according to Buerger, 1959) of the search

model are calculated and averaged over all the target atoms or

all the images found in the Patterson function. A signal-

processing technique is then used; that is, the averaged char-

acteristics are combined linearly using a set of optimal weights

derived from the multiple linear regression method and the

combined score is then used as the rotation function.

2.2. Sampling of the rotation space

It is very difficult to sample rotation space uniformly.

Lattman has designed an angle convention for sampling

Eulerian angles (Lattman, 1972). The advantages of using

Eulerian angles are particularly pronounced when a rotation

search is conducted in the reciprocal-space implementation of

the rotation function with crystallographic symmetries.
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However, in this work polar angles are used to sample the

rotation space globally. Firstly, the quaternion convention is

used to generate the rotation matrix and the polar angles.

Since the sum of the four components of a quaternion is unity,

the order in which each component is generated can be

permutated. For a given order of the four components, each

component is generated randomly within the appropriate

range. Permutation of the order of the four components

ensures further randomization and better uniformity. 106 polar

angles are generated this way. Then, for any two polar angles

their angle distance is calculated. If it is less than 4�, one of the

two angles is removed. This removes the redundancy in the

sampling and results in approximately 105 angles.

2.3. The algorithm for computing the rotation function

The rotation space is sampled exhaustively with polar

angles as described above. Vector matching is performed with

a translation-search algorithm in real space. The translation-

search algorithm is based on a digitized translation-vector

space (Jiang & Kim, 1991; Jiang & Rao, 2001). A one-

dimensional case of this algorithm is illustrated in Fig. 1, in

which a set of vectors in one dimension is matched to another

set. The inter-set translation vectors between the first set and

the second set are calculated, which are just the difference

vectors. The corresponding matching scores are then stored in

a translation-vector space, also in one dimension, according to

the positions of the difference vectors. In Fig. 1, when the

difference translation vector Tx = 1, three vectors are matched

between the two sets and a peak is found in the distribution of

matching scores in the translation-vector space. In the three-

dimensional case, the algorithm works by the same principle.

The peaks are searched in the distribution of matching scores

in the three-dimensional translation-vector space.

Since the Patterson function vectors are weighted, the

matches between the vector sets are also weighted. Three

common image-seeking functions are implemented in our

method: the product of the weights, the correlation coefficient

of the weights and the relative R factor of the weights between

the Patterson vectors and the model atoms.

2.4. Testing with a myoglobin crystal structure using
experimental diffraction data

The new method was tested using a myoglobin crystal

structure with deposited experimental data. Both the crystal

structure and the diffraction data were downloaded from the

Protein Data Bank (PDB; http://www.rcsb.org) with PDB code

1dti. The space group is P212121, with unit-cell parameters

a = 49.163, b = 40.002, c = 80.011 Å and with one molecule in

an asymmetric unit. The experimental diffraction data for this

entry 1dti were available to 1.7 Å resolution. Another

myoglobin crystal structure (PDB code 1a6m) was also used in

the tests. Its space group is P21, with unit-cell parameters

a = 63.800, b = 30.810, c = 34.350 Å, � = 105.80� and one

molecule in an asymmetric unit. The diffraction data for this

entry were available to 1.0 Å resolution.

In the tests, the experimental Patterson map was initially

calculated using data between 20 and 3.0 Å resolution. Firstly,

the diffraction amplitude was normalized (using ECALC from

CCP4; Collaborative Computational Project, Number 4,

1994). The Patterson map was then calculated using the

normalized amplitude (using FFT from CCP4). To make sure

that no cross Patterson vectors were missed, the Patterson

map was extended to double the unit cell; that is, with a range

from 0 to 2.0 along each unit-cell axis (using EXTENDS from

CCP4). The Patterson function vectors were then output by

writing out grid points with function values more than 1.0�
(using a modified version of PEAKMAX from CCP4 called

PEAKMAXGRD). The output grid points were in PDB

coordinate format. This file was manually edited to remove the

origin peaks, which were usually the highest peaks and

obviously close to the origin. The edited file was then used as

input for the experimental Patterson function vectors.

Three matching functions or image-seeking functions

(Buerger, 1959) were used in our method. The first function is

the product of the weights between the Patterson vectors and

the model atoms matched. The second function is the corre-

lation coefficient of the weights between the Patterson vectors

and the model atoms matched. The third function is the

relative R factor between the weights of the Patterson vectors

and the model atoms matched. In the translation space, peaks

could be searched according to any one of the three functions,

corresponding to three peak modes. For any given peak mode,

each peak has a peak score and two other scores that could be

fetched at the same peak position in the other two score

distributions. However, these three scores are not used

directly. Instead, they are averaged over all the peaks in the

translation-vector space for the given peak mode. It is the

average scores that are output for computing the rotation

function. This is equivalent to averaging over all the pivotal

atoms with good matches or signals. Alternatively, it is

equivalent to averaging over all the good images found by the

given image-seeking function in the Patterson function. A

fourth score is then output which is the average number of

model atoms (or digitized grids) that have been matched to

the Patterson vectors in calculating the given image-seeking
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Figure 1
A schematic diagram of the translation-search algorithm in one-
dimensional space. The best translation for the simple example shown
is one grid step along the x axis. The three-dimensional spaces of the
search model, the Patterson vectors and the translation vectors are all
digitized with the same grid spacing.



function. Finally, a fifth score is output which is the number of

peaks found in the translation space for the given peak mode

and used for averaging.

Therefore, the rotation search is usually run three times

with three different peak modes. By merging the three sets of

five scores from each peak mode, a total of 15 scores will be

output for each rotation sampled. A signal-processing tech-

nique such as the multiple linear regression method is then

used to optimize a set of weights for a given model and a

crystal structure and to combine the 15 scores to compute a

total score, which is used as the rotation-function value. It is

expected that the peaks of this new rotation function should

correspond to the correct orientations. This new method has

been implemented in real space and tested on a two-helix

fragment from residues A3 to A36 of 1dti using the main-chain

atoms (N, CA, C and O) only. For the search model, the atomic

coordinates were directly used for computation of the image-

seeking functions.

3. Results

The purpose of the tests was to demonstrate that the new

rotation function could work similarly to other known rotation

functions for molecular replacement. A two-helix fragment

from myoglobin was used as the search model, as shown in

Fig. 2. Diffraction data from PDB entry 1dti were used to

calculate the Patterson function. A global rotation search was

performed using a grid size of 4 Å. Firstly, a set of normal-

ization factors and relative weights was optimized by

performing a local rotation search about the native identical

solution in the crystal structure. The resulting correlation

between the rotation distance and the optimized rotation

function was 0.6030.

A global rotation search was then performed. The rotation

function was computed according to the relative weights

optimized from the multiple linear regression method and

peaks were found and sorted. Table 1 lists the rotation-

function solutions whose rotation-angle distances are less than

10� from the identical rotation. It can be seen that there are

five correct solutions in the top 100 candidate solutions,

including the identical solution, which is ranked as the 31st

solution. Table 1 also shows that the peak heights of the

correct solutions are above 2�. These results show that the

new rotation function works reasonably well in the current

test.

To test the generality of the relative weights, another

myoglobin crystal structure (PDB code 1a6m) was used.

Before optimizing the weights, the 15 scores were first

normalized by converting them to Z scores. It is clear that the

relative weights would be affected by the range of scores

included in the training set. However, in our case the relative

weights seemed to be more dependent on a specific model,

whereas the normalization factors (average and standard

deviation) seemed to be more dependent on the crystal

structures included in the training set. Although this obser-

vation was not conclusive, a combination of one set of weights

and another set of normalization factors obtained separately

worked in at least one test case. When several crystal struc-

tures, including true crystal structures with different space

groups and artificial structures with box-shaped unit cells,

were merged into one training set to obtain a merged set of

normalization factors and weights, the merged set seemed

much more general (see Table 2). When this set was applied to

the global search test shown above, there were 13 correct

orientations in the top 200 candidate solutions. They were

ranked at 34, 46, 71, 74, 75, 76, 89, 116, 119, 121, 138, 189 and

196. The identity rotation (0, 0, 0) was ranked at 75. Both the

native set and merged set of weights are shown in Table 2.

To see whether it was necessary to use all 15 scores for the

computation of the rotation function, the correlation coeffi-
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Figure 2
The two-helix search model used in the global rotation search. It consists
of the main-chain atoms of residues A3–A36 of the myoglobin structure
1dti. The main-chain atoms include the N, CA, C and O atoms.

Table 1
Rotation-function peaks using a two-helix fragment as the search model.

Solution No. Rank ’ (�)  (�) � (�) Peak height (�)

1 11 190.5 111.2 3.2 2.90
2 22 73.8 90.0 7.4 2.79
3 31 0.0 0.0 0.0 2.70
4 71 206.2 59.8 5.3 2.43
5 96 208.8 6.5 9.3 2.29
6 111 195.5 170.7 5.4 2.20

Table 2
Optimized relative weights for the computation of the rotation function.

The native set was obtained by including only crystal structure 1dti in the
training set. The merged set was obtained by including 1dti, 1a6m and several
artificial crystal structures. The search model was either residues A3–A36 of
1dti or the same fragment from 1a6m superimposed on 1dti.

Score notation Native set Merged set

FP-1 �1.114731 �5.871909
Corr-1 �0.043121 0.133801
Npair-1 0.063635 0.414468
Rfac-1 0.352831 �3.920085
Navg-1 �0.199072 0.151711
FP-2 1.086858 5.840462
Corr-2 �0.283821 �0.690696
Npair-2 �0.411570 �0.579139
Rfac-2 0.282967 �0.908377
Navg-2 0.156114 �0.067345
FP-3 0.614148 0.427881
Corr-3 �0.263527 �0.416576
Npair-3 �0.069208 �0.119076
Rfac-3 �0.036298 3.577076
Navg-3 0.003657 �0.113181



cients between the angle distance and each score were

checked. The highest correlation coefficient was achieved by

the correlation coefficient score in peak mode 2, with a value

of 0.2439. The product score was the second highest, with a

value of 0.2106. These results are consistent with what is

observed in other rotation functions. Therefore, it is possible

to use only one type of score to compute the rotation function,

especially in the reciprocal-space implementation (see x4). For

the real-space implementation, it is better and more robust to

use the combined score from the 15 scores.

To see the effect of including the cross-vectors in the

Patterson search, the self-vectors were extracted from the

Patterson map by applying a radius cutoff of 15 Å around the

origin. The same global search was then performed. Using

weights optimized for the self-vectors, which produced a

correlation coefficient of 0.4923 for the angle distance, the

rotation-function values were calculated. The first correct

orientation was ranked at 205, with a rotation of (86.28, 50.65,

5.488�). This result is consistent with the lower correlation

coefficient obtained from weight optimization using only the

self-vectors.

4. Discussion

The proposed rotation function is the first method that utilizes

both the self and the cross Patterson vectors in computing the

rotation function in molecular replacement. The traditional

method of computing the rotation function is to integrate the

Patterson correlation within a volume around the origin by

limiting the length of the interatomic vectors so that the

majority of the integration arises from the self Patterson

vectors. By interpreting the Patterson vector equation (4) in a

novel way based on the image-seeking method (Buerger,

1959) in Patterson vector space, the technique of averaging

over the signals (or the images) is used to reduce the noise

from the background matching. As a result, a new rotation

function is defined. In this novel interpretation, the ‘pivotal’

atoms represent those atoms in the target molecule that lead

to genuinely good matches with the search model, while the

‘vector’ atoms correspond to the atoms in the search model

matched to the counterpart image atoms in the target mole-

cule. Thus, there is some similarity between our method and

Buerger’s image-seeking method. The difference is that our

method further makes use of averaging to enhance the signals

from the many model images found in the Patterson function

vector space. Because of the overlap of the vectors in the

Patterson function, there are many false-positive matches in

the image-seeking functions. However, these false-positive

background-noise matches tend to average out. Indeed, our

results show that for the search model tested, this approach

seems to be valid. Therefore, in the real-space implementation

the new rotation function for molecular replacement can

utilize the signals from both the self and the cross Patterson

vectors in a way that has not previously been possible.

It should be pointed out that our method could also be

implemented in reciprocal space. Using (4), it is clear that the

Patterson vectors are matched with the model vectors, instead

of the interatomic vectors of the model. The matching

between the two sets of vectors is equivalent to constructing a

translation function and finding the translation peaks at

difference vector vt. The reciprocal implementations of similar

translation functions using a fast Fourier transform has been

used for shape matching in molecular docking (Chen et al.,

2003; Katchalski-Katzir et al., 1992) and in crystallography. In

fact, the reciprocal implementation of (4) may also be

considered as a variant of the phased translation function

(Bentley, 1997; Colman & Fehlhammer, 1976; Vagin &

Teplyakov, 2000). For example, the product score of the new

rotation function can be computed by first performing a

Fourier transform with coefficients Fc exp(i’c)Fo
2. Searching

for the peaks in the translation map and averaging the peak

heights then gives the product score for the new rotation

function. The reciprocal implementation will in general have

higher computation efficiency. For the current real-space

implementation, the global search performed for the two-helix

model took about 30 h of CPU time (3.0 GHz) using a grid

size of 4 Å for the translation-vector matching.

It should also be pointed out that for larger search models

this rotation function does not work as well as the conven-

tional rotation function. Using the whole myoglobin structure

as the search model in a global search, the signals for the

correct solutions were not very strong. This is because

matching too many ‘vector’ atoms in the model image can

introduce too much noise that cannot be easily averaged out.

Also, the number of translation peaks found for averaging for

larger models is usually lower than that for smaller models.

Therefore, our rotation function is more suitable for smaller

search models, which could sometimes complement traditional

rotation functions.

One of the main purposes of our method is to develop new

methods for ab initio phasing using molecular replacement.

Therefore, it is important to be able to limit the number of

candidate peaks found in a global rotation search using a

standard search model so that the subsequent translation

search requires less computation. Our results show that the

new rotation function has this potential.
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